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Absl~act: The dynamic behavior of  two collinear anti-plane shear cracks in a piezoelectric 

layer bonded to two half spaces subjected to the harmonic waves is investigated by a new 

method. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. 

By using the Fourier transform, the problem can be solved with two pairs of  triple integral 

equations. These equation,~ are solved by using Schmidt's method. This process is quite 

different from that adopted previously. Numerical examples are provided to show the effect 

of  the geometry of  cracks, the frequency of the incident wave, ,  the thickness of  the 

piezoelectric layer and the constants of  the materials upon the dynamib stress intensity factor 

of cracks. 
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Introduction 

It is well-known that piezoelectric materials produce an electric field when deformed and 

undergo deformation when subjected to an electric field. The coupling nature of piezoelectric 

materials has attracted wide applications in electro-mechanical and electric devices, such as  

electro-mechanical actuators, sensors and structures. When subjected to mechanical and electrical 

loads in service, these piezoelectric materials can fail prematurely due to defects, e . g . ,  cracks, 

holds, etc. arising during their manufacture process. Therefore, it is of great importance to study 

the electro-elastic interaction and fracture behavior of piezoelectric materials. Moreover, it is 

known that the failure of solids, results from the final propagation of the cracks, and in most 
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cases, the unstable growth of the crack is brought about by the external dynamic loads. So, the 

study of the dynamic fracture mechanics of piezoelectric materials is much more important in 

recent research. 

In the theoretical studies of crack problems, several different electric boundary conditions at 

the crack surfaces have been proposed by numerous researchers [1-14] . For the sake of analytical 

simplification, the assumption that the crack surfaces are impermeable to electric fields was 

adopted by some researchers [1 -6, 14] . In these models, the assumption of the impermeable cracks 

refers to the fact that the crack surfaces are free of surface charge and thus the electric 

displacement vanishes inside the crack. In fact, cracks in piezoelectric materials consist of 

vacuum, air or some other gas. This requires that the electric fields can propagate through the 

crack, so the electric displacement component perpendicular to the crack surfaces should be 

continuous across the crack surfaces. However, due to much simpler treatment from a 

mathematical point of view, the impermeable crack are still employed extensively in the study of 

the crack problems of piezoelectric materials [1-4' 14-16] Recently, the dynamic response of 

piezoelectric materials and the failure modes have attracted more and more attention from many 

researchers [15-2~ A finite crack in an infinite piezoelectric material strip under anti-plane 

dynamic electro-mechanical impac t was investigated with the well-established integral transform 

methodology by Yu and Chen [15] . Axisymmetric vibration of a piezo-composite hollow cylinder 

was studied by Paul and Nelson [17] . The dynamic representation formulas and fundamental 

solutions for piezoelectricity had been proposed earlier by Khutoryansky and Sosa I18] . The 

dynamic response of a cracked dielectric medium in a uniform electric field was studied by 

Shindo [19] . Narita and Shindo [~] also carried our an analysis of the scattering of anti-plane shear 

waves by a finite crack in piezoelectric laminates. In particular, control of laminated structures 

including piezoelectric devices was the subject of research in Refs. [21 - 251 �9 Many piezoelectric 

devices comprise both piezoelectric and structural layers, and an understanding of the fracture 

process of piezoelectric structural systems is of great importance in order to ensure the structural 

integrity of piezoelectric devices [25' 26] However, the electro-elastic dynamic behavior of 

l~fninated piezoelectric composite structures with two cracks has not been studied despite the fact 

that many piezoelectric devices are constructed in a laminated form. Accordingly, there is a need 

to investigate the electro-elastic fracture mechanics analysis of laminated piezoelectric structures. 

In the present paper, we consider the anti-plane shear problem for two cracked piezoelectric 

layers bonded to two haft spaces. The two half spaces have similar properties and the piezoelectric 

laminate is subjected to combined mechanical and electrical loads. The cracks are situated 

symmetrically and oriented in the direction parallel to the interfaces of the layer. The interaction 

between two collinear symmetrical cracks subjects to anti-plane shear waves in piezoelectric layer 

bonded to two half spaces is investigated using a some different approach by a new method, 

namely Schmidt ' s  method [27] . It is a simple and convenient method for solving this problem. 

Fourier transform is applied and a mixed boundary value problem is reduced to two pairs of triple 

integral equations. In solving the triple integral equations, the crack surface displacement and 

electric potential are expanded in a series of Jacobi polynomials and Schmidt '  s method [27] is 

used. This process is quite different from that adopted in Refs. [1 - 13, 15 - 263. The form of 

solution is easy to understand. Numerical calculations are carried out for the stress intensity 
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factors. 

1 Formulation of the Problem 

Consider a piezoelectric layer that is sandwiched between two elastic half planes with an 

elastic stiffness constant c E . Quantities in the haft spaces will subsequently be designated by 

superscript E .  The piezoelectric material layer of thickness 2h contains two cracks of length 1 - b 

that are situated in the mid-plane and are parallel to the interfaces, as shown in Fig. 1, 2b is the 

distance between the cracks ( 2 b is the distance between the cracks. The piezoelectric boundary- 

value problem for and anti-plane shear change in the numerical values of the present paper, a > 

b > 0 ) .  The piezoelectric boundary-value problem for anti-plane shear is considerably simplified 

if we consider only the out-of-plane displacement and the in-plane elastic fields. Let co be the 

circular frequency of the incident wave. In what follows, the time dependence of all field 

quantities assumed to be of the form e x p ( -  icot 

constitutive equations can be written as 

rzk = C 4 4 w , k  + e l S ~ , k  

Dk = e l sw,k  - e11~,k 

E = C E E 
~.x.z 4 4 W , x  , 

will be suppressed but understand. The 

( k  = x , y ) ,  

( k  = x , y ) ,  

E W E .Cy z = r  ,x 

(1) 

(2) 

( 3 , 4 )  

where Gk, Dk (k  = x ,  y)  are the anti-plane shear stress and in-plane electric displacement, 

respectively, c44, e15, en  are the shear modulus, piezoelectric coefficient and dielectric 

parameter, respectively, w and ~ are the mechanical displacement and electric potential, rxzE, ryzE 

and w E are the shear stress, and the displacement in the half elastic spaces, respectively. The 

anti-plane governing equations are E26] 

c44 V 2 w  + e l 5  V 2 ~  = p3~'w/3t  2,  (5) 

e15V2w- enVZq ' = O,  ( 6 )  

V 2 W  E = p E O 2 w E I O t 2 ,  (7) 

where 7 2 = 82/8x 2 + 82/8y2 is the two-dimensional Laplace operator, p is the mass density of 

the piezoelectric materials. J is the mass density of the elastic materials. Body force, other than 

'inertia, and the free charge are ignored in present work. Because of the assumed symmetry in 

geometry and loading, it is sufficient to consider the problem for 0 ~< x < ~ ,  0 ~ y < ~ only. 

A Fourier transform is applied to Eqs. ( 5 ) ,  (6) and ( 7 ) .  Assume that the solutions are 

= { A l ( s ) e x p [ -  Y l Y ]  + A 2 ( s ) e x p [ u  d s ,  (8) w ( x , y , t )  -~ o 

w E ( x , y , t )  = A 3 ( s ) e x p [ -  Y 2 y ] e o s ( s x ) d s ,  (9) 
0 

,} 
e~5 _ , 

whereyl  = ~/s2 - (co/Csn)2,  cSH = ~/ Is /p  ' IS = c44 + - - ,  Y2 = ~/s2 (co/(C~ H)2 
E l l  

c~n = ~ / c E @  E . A l ( s ) ,  A 2 ( s )  and A3(s )  are unknown functions, and a superposed bar 

indicates the Fourier transform throughout the paper, e . g . ,  
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f f(x)e - i ~  dx .  (10) 

Inserting Eq. (8)  into Eq. ( 6 ) ,  it can be assumed 

e l  5 W e X  _~foo  r  - -  ~ , y , t )  = [B l (S )e - 'Y  + B , ( s ) e ' Y ] c o s ( s x ) d s ,  (11) 
Ell  0 - 

where B1 ( s ) and B2 ( s ) are unknown functions. 

As discussion in Refs. [ 15 ,19 ,20 ] ,  the boundary conditions of the present problem are (In  

this paper, we just consider the perturbation stress field. ) 

r y ~ ( x , 0 , t )  = -  r0 (b ~ < l x  I~< 1) ,  (12) 

D y ( x , O , t )  = -  D o (b ~<1 x I <  1) ,  (13) 

w ( x , O , t )  = ( ~ ( x , O , t )  = 0 (I x < b, I x I >  1) ,  (14) 

E r y ~ ( x , h , t )  = v y ~ ( x , h , t ) ,  (15) 

w ( x ,  +_ h , t )  = w E ( x ,  +_ h , t ) ,  (16) 

OT(X, _+ h , t )  = 0, (17) 

w ( x , y , t )  = w E ( x , y , t )  = r  = 0,  for~-Tx2 + y2___~ m .  (18) 

In this paper, the wave is vertically incident and we only consider that r0 and Do are positive. 

The boundary conditions can be applied to yield 

two pairs of triple integral equations: 

~f 'Z(s)cos(sx)as  = 

(0 ~ x < b,1 < x ) ,  

~f~o u 1 7 6  = 

1 (  e]sDo) 
"C O + - -  

and 

(19) 

(b  ~< x ~< 1) (20) 

,, j _ b _ - b - k  
t , _ _  1 

hi 
| 

q 

Fig. 1 Cracks in a piezoelectric layer 

under anti-plane shear waves 

~f ~ B ( s ) c o s ( s x ) d s  = 0 (0  ~< x < b , 1  < x ) ,  ( 2 1 )  
0 

2 f ~ Do 
s F l ( s ) B ( s ) c o s ( s x ) d s  - -  (b < x <~ 1) ,  (22) 

~ -  0 Ell  J 
-27 h 1 - /.t3e 

where F l ( s )  - 1 + ,u3e , -~-7 h ,  F 2 ( s )  - 
1 - e -2sh 
1 + e -2'h' A ( s )  = (1 + /~.3e-~-",h)Al(s), 

A, ( s )  -~-7 h .  . = / . t 3 e  , ~ l ( S ) ,  B(s) = ( 1  + e-2~h)Bl(S), B2(s)  = e-2"hBl(S), 

2 
el5 CE44 e L [-z 1 

/1 = (?44 + - -  /-tl = u -- - - u  ~Z2 = u + ~r /A3 -- 
e l l  ' /A /2 /2 2 

To determine the unknown functions A ( s ) ,  B ( s )  , the above two pairs of triple integral 
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Eqs. (19)  - (22)  must be solved.  

2 S o l u t i o n  o f  t h e  T r i p l e  I n t e g r a l  E q u a t i o n  

For solving two pairs of  triple integral equations,  the Schmidt '  s method [27] can be used to 

solve the triple integral Eqs.  (19)  - ( 2 2 ) .  The displacement w and the electric potential # can be 

represented by the following series: 

w(x O . t )  = " -  "(~-'~-) 
n = II 

1 

1 b 1 -  ~ ~_ , 

for  b ~< x ~< 1, y = O, (23)  

w(x,O,t) = O, f o r x  < b ,  x > 1, y = O, (24)  

1 

I 1 .~.a a ,  p(~,,7 ) 2 1 - 
.=o 1 - b  

2 

for  b ~< x ~ 1, y = 0 ,  (25)  

r  = 0 ,  f o r x  < b ,  x > 1, y = 0 ,  (26)  

where an and b~ are unknown coefficients to be determined and p ( m , m ) (  x ) is a Jacobi 

polynomial [2< . The Fourier transformation of  Eqs.  (23)  and (25)  is [29] 

n = 0  

B(s )  -- ~) (s ,0 , t )  - e15~o($,0,t) = ]~_~_d(bn - e l~an)QnGn($ ) ! J n + l ( S  ), (2~) 
E l l  # = o  5"11  

Q,,. = 2 4  I"( n + 1 + 1/2) (29) 

( -  1)~eos 1 + b]  (n  = 0 , 2 , 4 , 6 , ' " ) ,  s 2 ) 
c n ( s )  = ,,+~ ~ b (3O) 

(_ l ) ~ Z s i n (  s I + )  (n. = 1 , 3 , 5 , 7 , ' " ) ,  

where F(  x ) and J,, ( x ) ave the G a m m a  and Bessel functions,  respectively.  

Substituting E q s . ( 2 7 )  and (28)  into E q s . ( 1 9 )  - ( 2 2 ) ,  respect ively,  Eqs.  (19)  and (21)  

can be automatically satisfied, respectively.  Then the remaining Eqs.  (20)  and (22)  ave reduced 

to the form after integration with respect to x in [ b, x ] ,  respectively.  

r ' ,  - [ 
z..ja,~Qn, s - ~ G ~ ( s ) J ~ + l ( s  ) 1 [ s i n ( s x )  - s i n ( s b ) ] d s  = 

,t = o J O  

7r 
~ Z - o ( 1  + ) , ) ( x  - b ) ,  (31)  

_ - e u  a ' ~ ] ' ~ " J o  
+ [Fa(s) - l ] } x  
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[s in(sx)  - s in ( sb)]ds  = -  rrD~~ - b ) ,  
2en  

where 2 e 15 Do -- - - ,  g l (  S ) = ( r l  -- S) -- (u  + s ) / x 3 e x p [ - 2 y 1 h l ,  
~11 TO 

g z ( s )  = 1 + /z3exp[-  2 y l h ] .  

The semi-infinite integral in Eqs. (31) and (32) can be modified as [=] 

1 j .  l ~ b ) [  1 

2(,~ + 1) 

gl($)]  1 + b ,  . / 
+ s g : ( s ) j c ~  ~ - - j s ~ s ~ ) d ~  = 

u+l . [ ( /7 ,  + 1 
(12__~b) sm t ~ )~) 

(32) 

siol (o + 1, arcs,o( 1 + ,  - 2x) 1 }+ 

f(~ g l ( S )  ~b)sin(sx)ds, (33 )  s: g: ( s )  J~+l ( s ~ - ~ ) c o s ( s  

f : l  g l ( s )  l + b  s J~+ x (S  ~ - - ~ ) [ 1 ,  + ~-g((s) ]s in(s  ~ ) s i n ( s x ) d s  = 

1 {co s [ (n  + 1)arcsin(  1 + b - 2x 
2 ( n  + 1) 1 -  b )3 - 

{x + ~ - - ~ - +  1 + b ; ( x  + ~ - ~ ) :  _ ( l ~ _ b ) : } = + l  + 

f :  g ] ( s ) .  ~ - - ~ ) s i n (  1 +  b~ " ' - - ~ - j s m ,  s ~ s ) - J , + l  ( s s sx )ds . (34) 

For a large s ,  the integrands of the semi-inf'mite integral in Eqs. (33) and (34) almost all 

1/s 2 except for the singularities in the integrands of the integrals in Eq. (33) .  The singularities in 

the integrands of the integrals that define the function g2 ( s )  in Eq. (33) are poles that occur in 

the complex s-plane at the zero of g2 ( s ) -  The technique merely deforms the contour of 

integration below the real s-axis so that no poles occur on the path of integration. These zero 

points of g ( s ) not only depend on the crack length, the electric loading and the frequency of the 

incident wave, but also depend on the properties of the materials. The poles represent the addition 

of a free wave solution that will ensure that the scattering wave solution does not contain standing 

waves [3~ . Note that the integrals in Eq. (33)  will also have principal value integrals. So the 

semi-infinite integral in the Eqs. ( 3 3 )  and (34 )  can be evaluated numerically by Filon's 

method [31] . Thus the semi-infinite integral in Eqs. (31) and (32)  can be evaluated directly. 

Eqs. (31) and (32) can now be solved for the coefficients a s and b n by the Schmidt's method. 

For brevity, Eq. ( 31 ) can be rewritten as ( Eq. (32) can be solved using a similar method as 

follows) 
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~ a a . E . ( x )  = U(x)  (b  < x < 1) ,  (35) 
n=0 

where E~ ( x )  and 

determined. A set of functions P.  ( x )  which satisfy the orthogonality condition ;1 
P,~(x)P~(x)dx  = N~.~.~, N~ = bP'~(x)dx 

can be constructed from the function, E.  ( x ) ,  such that 

. Mi~ 
i=O 

where M~j is the cofactor of the element d~j of D . ,  which is def'med as 

doo, dol , do2 , ""  , don - 

d l o , d n  , d l z , " "  , d l .  

d 2 0 ,  d21 , d 2 2  , . . .  , d2n 

. . .  

U(x)  are known functions and coefficient a~ is unknown and will be 

(36) 

(37) 

(38) 

~176176 

d,,o , d,~l , dn2 , ' " ,  d,~,~ 

Using Eqs. (35) - (38 ) ,  we obtain 

~-~ M~j 1 f~ a.  = i=z.aqj ~ with qi = ~ o U ( x ) P s ( x ) d x  

I n t e n s i t y  Factors  

Coefficients a,, 

(39) 

and b. are known, so that entire perturbation stress field and the perturbation 

electric displacement can be obtainable. However, in fracture mechanics, it is of importance to 

determine the perturbation stress vy~ and the perturbation electric displacement Dy in the vicinity of 

the crack's  tips. Z-y~ and Dy along the crack line can be expressed respectively as 

r y ~ ( X , 0 , t )  = -  2fZ~a~O~I |  + [ ~ L F I ( S ) -  1]}x  
7~ n=0 0 

J .+l (S  ) eos (xs )ds  - (b .  - e1~5 ) Q .  G . ( s )  • 
E l l  am 0 

+ [ F ~ ( s )  - 1] }J~+,(s ~-~- )cos (xs )ds  , (40) {1 

Dy(x ,O, t )  = " ( enb .  - e l sa . )Q.  G . ( s ) { l +  [ f 2 ( s ) -  1 ] } x  
~ ~= 0 

J n + l  (s l ~  b)eos(xs)ds . ( 4 1 )  
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Observing the expression in Eqs.  (40 )  and ( 4 1 ) ,  the singular port ion of  the stress field and 

the singular portion of  electric displacement  can be obtained respect ively from the 

relationships[~-s] : 

{ r l + b  } 1 + b 1 1 + b x ) ]  + e o s [ s v ~  7 -  + x ) ]  , cos(.~ ~ - - ) o o s ( . , x )  = ~- cos[s( 2 

s i n ( s  1 ~ ) c o s ( s x )  -- ~-  s i n k s (  2 - x ) I  + s i n [ s ( 1 - -  + x ) ]  + b , 

J ~ ( s a ) c o s ( b s ) d s  ; 
| s in (n~r /2)  ( b  > a),  

fs< naros n( ,/a)l 
/ ,,F~ ~ _ I, ~- ( a  > b ) ,  

o J,,(sa)sin(bs)ds { I - - -  -a--~c~ ( b  > a )  

The singular part  of  the perturbation stress field and the singular part  of  the perturbation 

electric displacement  can be expressed respectively as fo l lows:  

v =---~_a(c44a,~ + e15b,~)Q,~H,,(b,x), (42)  
~7 a = O  

D = - - - ~ _ _ ~ ( e . b .  - e ~ s a . ) Q . H . ( b , x ) ,  (43)  
71: a = O  

whereH.(b ,x )  = ( -  1) '~+lf l(b,x,n)  (n = 0 , 1 , 2 , 3 , 4 , 5 , " "  ( f o r O <  x < b)) ,  

Hn(b ,x )  = - f 2 ( b , x , n )  ( n  = 0 , 1 , 2 , 3 , 4 , 5 , ' "  ( f o r  1 < x ) ) ,  

f l  ( b , * ,  n) = 

2 ( 1 -  b )  '~+1 

~ / ( 1  + b - 2 x )  2 - (1 - b ) 2 [ 1  + b - 2x  + ~ / ( 1  + b - 2 x )  2 - (1 - b)23  n+l 

f~_(b,x ,n)  = 

2 ( 1 -  b )  "+' 

V/72x - 1 - b )  2 - (1 - b ) 2 1 2 x  - 1 - b + ~ / ( 2 x  - 1 - b )  2 - (1 - b ) 2 ]  "+' 

At  the left end of  the right crack,  we obtain the stress intensity factor KL as 

j - 2 )~ . 
KL = l im ~/27r(b - x )  �9 r -- r e ( l -  b )  - ~ ( -  1 (e44a,~ + elsb~)Qn (44)  

~r~. b n = 0 

At the right end of  the right crack,  we obtain the stress intensity factor Ka as 

K R = lim v/2~rr(x - 1) - r = re(1 b) ~ ( c44a~  + elsb,)On. (45)  
x ~ t *  n = 0  

At the left end of  the right c rack ,  we obtain the electric displacement  intensity factor D L as 

O L = ,-lim~ ~/27-~(b - x )  - O = ~(1  b) ( -  1)n(e15a,~ - e11bn)On. (46)  
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At the right end of the right crack,  we obtain the electric displacement intensity factor Dn as 

DR = ~-linl ~ / 2 r c ( x ,  - 1) - D = n(1  b)  ,=0 (e15an - r (47)  

4 Numerical  Calculations and Discussions 

This section presents numerical results of  several representative problems.  From 

Refs.  I32 - 3 6 ] ,  it can be seen that the Schmidt '  s method is performed satisfactorily if the first 

ten terms of  the inf'mite series to E q . ( 3 5 )  are obtained. The solution of  two collinear cracks of  

arbitrary length a - b can easily be obtained by a simple change in the numerical values of  the 

present paper ( a > b > 0 ) ,  i . e . ,  it can use the results of  the collinear cracks of  length 1 - b / a  

and the strip width h/a  in the present paper .  The solution of  this paper  is suitable for the arbitrary 

length two collinear cracks in the piezoelectric layer bonded to dissimilar half  space.  All 

applications were focused on two cracked piezoelectric layer bonded to half  planes.  The 

piezoelectric layer is assumed to be the commercial ly available piezoelectric PZT-4 or PZT-5H,  

and the half  planes are either aluminium or epoxy.  The material constants of  PZT-4 are c44 = 

2 .56  • 10 ]~  els = 1 2 . 7 ( e / m 2 ) ,  r = 6 4 . 6  • 10 -1~  p = 7 500 kg/m 3 , 

respectively. The material constants of  PZT-5H are c44 = 2 . 3  x 101~ e15 = 

1 7 . 0 ( c / m 2 ) ,  eH = 150.4  • 10 -1~  p = 7 500 kg/m 3, respectively.  The material 

constants o f  aluminium are c E = 2 .65  x 1010(N/m 2 ) and p = 2 706 kg/m 3 . The material 

constants of  epoxy are c E = 0 .  176 • 101~ (N/m z ) and p = 1 600 kg/m 3 . The results of  the 

present paper  are shown in Figs.  2 - 13, respectively.  From the results, the following 

observations are very significant: 

( i ) The dynamic stress intensity factors not only depend on the crack length,  the width of 

the strip, the electric loading and the frequency of  the incident wave ,  but  also on the properties of  

the materials.  However ,  the electric displacement intensity factors only depend on the crack 

length, the width of  the strip, the electric loading and the properties of  the materials.  

( ii ) The interaction of the two collinear cracks decrease when the distance between the two 

collinear cracks increases. 

( i i i )  The stress intensity factors decrease when the width of  the piezoelectric layer 

increases. 

( iV ) The stress intensity factors increase with the increasing of  the electric loading for the 

width h > 1 . 0 .  However ,  the stress intensity factor becomes small with increasing of  the electric 

loading for the width h < 1 . 0 .  This is due to the coupling between the electric and the 

mechanical fields. However ,  the electric displacement intensity factors increase with the 

increasing of  the electric loading for any h . 

( V ) The dynamic stress intensity factors tend to increase with the frequency reaching a 

peak and then to decrease in magnitude.  However ,  when the frequency cO/Csn > 2 . 4 ,  the 

dynamic stress intensity factors tend to increase with the frequency again.  This phenomenon is 

brought up by the free wave.  Here ,  the free wave is created by the singularities in the integrands 

of the integrals in Eqs.  (31)  and ( 3 2 ) .  

(Yi )  The intensity factor K L is larger than K n for cO/Csn < 1 . 5 .  However ,  K L may be 
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smaller than KR for ~o/esH > 1 .5 .  The electric displacement intensity DL is larger than DR. 

Fig.2 

1.68~ 24- 

1.62 16 
1 56' 

! -.. 
I. 501 ~ 8 

1.44 

1.38i . . . . . . . . . .  
0 1 2 3 
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Fig. 3 
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Fig. 5 

,2i'6T . . . . .  KR/r~ 
~' 0.s i 

0 . 4 ~ _ _  
0.0 0.3 0.6 0.9 

b 

Slress intensity factors versus b for 

= 0.5, h = 1.0, oJIcsn --0.5 

( Aluminium/PZT-4/Aluminium ) 

4' 

3- ~ / r 0  

2- 
l 

1- 
0.0 0.3 0.6 0. 

b 

Fig.6 The electric displacement intensity 

factors versus b for ~ = 0 .5 ,  

h = 1.0, cO/Csn = 0.5 

( Aluminium/PZT-4/Aluminium ) 

Fig. 7 

1.6! 

1.4] K ~ / r 0 ~ ~  

1.3 

6 i z 3 

Stress intensity factors versus ~ for 

b = 0 .1 ,  h = 0.5,  W/csn = 0.5 

(Aluminium/PZT-4/Aluminium) 



Investigation of Two Collinear Ant i -Plane Shear Cracks 11 

" x  

Fig.  8 

3 0  

20 

10 

O" 

1 2 3 

The electric displacement intensity 

factors versus 2 for b = 0 . 1 ,  

h = 0 . 5 ,  ~O/csn = 0 . 5  

( Aluminium/PZT-4/Aluminium ) 

Fig .9 

1.55 

1.50 

~ 1.45 

1.40 

1.35 
J 
0 I 2 3 

Stress intensity factors versus ~ for 

b = 0 . 1 ,  h = 3 . 5 ,  cO/Csn = 0 .5  

( Aluminimrd PZT-4/Aluminium ) 

I L 

10 ill'DR~re 
0 

- -  , , .... , . 

0 1 2 ." 

Fig.  10 The electric displacement intensity 

factors versus 2 for b = 0 . 1 ,  

h = 3 . 5 ,  colcsn = 0 .5  

( Aluminium/PZT-4/Aluminium ) 

Fig.  11 

I 

1 
1.5o! //./'/rL/~O 

r I 
1.** 1 
1.38! K a ~ . ~  

I 
1.32i 

() 1 2 3 

Stress intensity factors versus A for 

b = 0 .1 ,  h = 5 .0 ,  cO/csH = 0.5 

( Aluminium/prZT-5 H/Aluminium ) 

1.6i �9 

1.2-i 

O. 8i 

0.4! , 
0 1 2 3 

CO/CSH 

Fig.  12 Stress intensity factors versus OJ/CSH 
f o r b  = 0 . 1 ,  ~ = 0 . 2 ,  h = 1 .0  

( Aluminium/PZT-5 H/Aluminium ) 

Fig.  13 

2.0 

1.9t 

1"8 t 
1.7 

1"6 i 

1"5 i _ _  
Ka/ro 

0 1 2 3 
), 

Stress intensity factors versus g for 

b = 0 . 1 ,  h = 1 .0 ,  o~/Csn = 0 . 5  

( Epoxy/PZT-5 I-I/Epoxy ) 



12 ZHOU Zhen-gong and WANG Biao 

R e f e r e n c e s  : 

[ 1 ] Deeg W E F. The analysis of dislocation, crack and inclusion problems in piezoelectric solids[ D~. 

Ph D thesis, Stanford University, 1980. 

[ 2 ] Pak Y E.  Crack extension force in a piezoelectric material [ J ] .  Journal of  Applied Mechanics, 

1990, 57(4)  :647 - 653. 

[ 3 I Pal< Y E. Linear electro-elastic fracture Mechanics of piezoelectric materials [ J ] .  International 

Journal of  Fracture, 1992, 54( 1 ) : 79 - 100. 

[ 4 ] Sosa H A, Pak Y E. Three-dimensional eigenfuncfion analysis of a crack in a piezoelectric ceramics 

[ J~ . International Journal of  Solids and Structures, 1990, 26(1)  :1 - 15. 

i 5 _7, Sosa H A. Plane problems in piezoelectric media with defects[ J ] .  International Journal of  Solids 

and Structures, 1991, 28(4)  :491 - 505. 

[ 6 I Sosa H A. On the fi-acture mechanics of piezoelectric solids[ J] . International Journal of  Solids and 

Structures, 1992, 29(8)  :2613 - 2622. 

7 ] Suo Z,  Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics[J] . Journal 

of  Mechanics and Physics of  Solids, 1992, 40 (5) : 739 - 765. 

8 ] Park S B, Sun C T. Fracture criteria for piezoelectric ceramics[ J ] .  Journal of  American Ceramics 

Society, 1995,78(7)  :1475 - 1480. 

[ 9 ] Zhang T Y, Tong P. Fracture mechanics for a mode ~ crack in a piezoelectric material[ J~ . Inter- 

national Journal of  Solids and Structures, 1996, 33(5)  :343 - 359. 

[ 101 Gao H, Zhang T Y, Tong P. Local and global energy rates for an elastically yielded crack in piezo- 

electric ceramics[J] . Journal of  Mechanics and Physics of  Solids, 1997, 45(4)  :491 - 510. 

[ 11 ] WANG Biao. Three dimensional analysis of a fiat elliptical crack in a piezoelectric materials [ J] . 

International Journal of  Enginerring, 1992, 30(6)  : 781 - 791. 

[ 12] Narita K, Shindo Y. Scattering of Love waves by a surface-breaking crack in piezoelectric layered 

media[J~ . JSME International Journal, Series A ,  1998, 41(1)  : 40 - 52. 

[ 13 ] Narita K, Shindo Y. Scattering of anti-plane shear waves by a finite crack in piezoelectric laminates 

[ J ] .  ActaMechanica, 1999, 1 3 4 ( 1 ) : 2 7 - 4 3 .  

i 14] ZHOU Zhen-gong, WANG Biao, CAO Mao-sheng. Analysis of two coUinear cracks in a piezo- 

electric layer bonded to dissimilar half spaces subjected to anti-plane shear[ J ] .  European Journal of 

Mechanics A/Solids,  2001,20(2)  :213 - 226. 

15 ] YU Shou-wen, CHEN Zeng-tlao. Transient response of a cracked infinite piezoelectric strip under 

anti-plane impact [ J ] . Fatigue and Engineering Materials and Structures, 1998, 21 ( 4 ) : 

1381 - 1388. 

[ 16 ] CHEN Zeng-fiao, Karihaloo B L. Dynamic response of a cracked piezoelectric ceramic under arbi- 

trary electro-mechanical impact[ J ] .  International Journal of  Solids and Structures, 1999, 36(5)  : 

5 1 2 5 -  5133. 

17] Paul H S, Nelson V K. Axisymmetric vibration of piezo-composite hollow circular cylinder[ J ] .  

Acta Mechanica, 1996, 116(5) :213 - 222. 

[ 18] Khutoryansky N M, Sosa H. Dynamic representation formulas and fundamental solutions tbr piezo- 

electricity[J].  International Journal of  Solids and Structures, 1995, 32(8)  : 3307 - 3325. 

19 ] Shindo Y, Katstwa H, Yan W.  Dynamic stress intensity factor of a cracked dielectric medium in a 

uniform electric f ie ld[J] .  Acta Mechanica, 1996, 117(1) : 1 - 10. 

20 ] Nafita K, Shindo Y, Watanabe K.  Anti-plane shear crack in a piezoelectric layered to dissimilar 

half spaces[J] .  JSME International Journal, Series A ,  1999, 42(1 ) : 66 - 72. 



Investigation of Two Collinear Anti-Plane Shear Cracks 13 

E21] 

E22] 

E231 

~24] 

~25~ 

~26~ 

F27] 

E28~ 

'293 

E30~ 

E313 
�9 q 

L32J 

1-333 

~34] 

1353 

[36] 

Tauchert T R. Cyfindrical bending of hybrid laminates under thermo-electro-mechanical loading[J]. 

Journal of Thernal Stresses, 1996, 19(4) : 287 - 296. 

Lee J S, Jiang L Z. Exact electro-elastic analysis of piezoelectric laminate via state space approach 

[ J ~ . International Journal of Solids and Structures, 1996, 33(4) : 977 - 985. 

Tang Y Y, Noor A K, Xu K. Assessment of computational models for thermoelectroelastic multi- 

layered plates[J]. Computers and Structures, 1996, 61(6) : 915 - 924. 

Batra R C, Liang X Q. The vibration of a rectangular laminated elastic plate with embedded piezo- 

electric sensors mad actuatorsEJ_7. Computer and Structures, 1997, 63(4) :203 - 212. 

Heyliger P. Exact solutions for simply supported laminated piezoelectric platesEJ]. ASME Journal 

of Applied Mechanics, 1997, 64(4) : 299 - 313. 

Shindo Y, Domon W, Narita F. Dynamic bending of a symmetric piezoelectric laminated plate with 

a through crackEJ]. Theoretical and Applied Fracture Mechanics, 1998, 28(2) :175 - 184. 

Morse P M, Feshbach H. Methods of Theoretical PhysicsEM]. VOl 1. New York: McGraw-Hill, 

1958, 828 - 929. 

Grackshteyn I S, Ryzhik I M. Table of Integral, Series and Products [ M] .  New York: Academic 

Press, 1980, 980 - 997. 

Erdelyi A. Tables of Integral Trar~forna~EM]. Vol 1. New York: McGraw-Hill, 1954, 3 8 -  95. 

Keer L M, Luong W C. Diffraction of waves and stress intensity factors in a cracked layered com- 

posite[J] . Journal of the Acoustical Society of America, 1974, 56(5) : 1681 - 1686. 

Amemiya A, Taguchi T. Numerical Analysis and Fortran[M]. Tokyo: Maruzen, 1969. 

Itou S. Three dimensional waves propagation in a cracked elastic solidEJ]. ASME Journal of Ap- 

plied Mechanics, 1978, 45(2) : 807 - 811. 

Itou S. Three dimensional problem of a running crack E J ].  International Journal of Engineering 

Science, 1979, 17(7):  59 - 7 1 .  

ZHOU Zheng-gong, HAN Jie-cai, DU Shan-yi. Two collinear Griffith cracks subjected to uniform 

tension in infinitely long stripE J] . International Journal of Solids and Structures, 1999, 36(4)  : 

5597 - 5609. 

ZHOU Zhen-gong, HAN Jie-cai, DU Shan-yi. Investigation of a Griffith crack subject to anti-plane 

shear by using the non-local theory[J]. International Journal of Solids and Structures, 1999, 36 

(3) : 3891 - 3901. 

ZHOU Zhen-gong, WANG Biao. Investigation of a Griffith crack subjected to uniform tension us- 

ing the non-local theory by a new methodEJ]. Applied Mathematics and Mechanics ( English Edi- 

tion), 1999, 20(10) : 1099 - 1107. 


